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Summary

Structures subjected to random excitations with uncertain
system parameters degraded by surrounding environments (a
random time history) are studied. Methods are developed to
determine the statistics of dynamic responses, such as the
time-varying mean, the standard deviation, the autocorrelation
functions, and the joint probability density function of any
response and its derivative. Moreover, the first-passage
problems with deterministic and stationary/evolutionary
random barriers are evaluated. The time-varying (joint) mean
crossing rate and the probability density function of the first-
passage time for various random barriers are derived.

Introduction

Many structures that require high performance or high
reliability and durability often operate under complex
environments including random excitations and random
temperatures. These excitation and temperature variations
not only degrade the material but also cause an additional
randomness in the uncertain material behavior. In addition,
a small variation in the structural shape may have an important
effect on the structural responses. Therefore, the deterministic

structural analysis is not sophisticated enough to quantify the
uncertain structural responses, and the design requirements
cannot be satisfied. For this reason a methodology has been
developed for a probabilistic dynamic analysis of stochastic
structures degraded by surrounding service environments.
This methodology evolves from the concept of NESSUS
(Numerical Evaluation of Stochastic Structures Under Stress),
which is a probabilistic structural analysis code developed
under NASA’s Probabilistic Structural Analysis Methods
Project (Chamis, 1986). The methodology consists of five
parts: (1) random process decomposition, (2) probabilistic
material behavior model, (3) perturbed dynamic analysis of
uncertain systems, (4) the first-order-second-moment method,
and (5) a set of reliability algorithms. The random process
decomposition procedure expresses the random phenomenon
by a set of independent random variables and their respective
characteristic functions. The probabilistic material behavior
model defines the relationship between material properties
(Young’s modulus, damping ratio, thermal expansion
coefficient, strength, etc.) and the random phenomena
(temperature, fatigue, etc). The perturbed dynamic analysis
of uncertain systems produces perturbed time histories
(dynamic responses), which are used to determine the response
functions numerically in terms of independent random
variables at each time. The first-order-second-moment
method redefines the limit state function in the normalized
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probabilistic space. A set of reliability algorithms are then
used to determine the important response statistics and to
solve the first-passage problems.

This newly developed method is demonstrated by performing
a transient analysis of a stochastic structure subjected to random
excitations under severe random temperature conditions. The
structure is modeled by a single-degree-of-freedom oscillator,
or only the fundamental mode is considered in the dynamics
analysis. The natural frequency of this oscillator, which is a
function of the uncertain system parameters (geometry, material
properties, etc.), is randomly degraded by the temperature
process. The excitations can be either stationary or
evolutionary random processes. Second-order statistics of
any response, such as the time-varying mean, the standard
deviation, and the autocorrelation functions, are determined.
Also, the first-passage problems with constant or stationary
evolutionary barriers are evaluated. A random barrier, such
as the uncertain material strength or clearance for maximum
displacement, is composed of its original randomness and of
a variation due to the effect of random temperature and fatigue.
The probability events in which crossing does or does not
occur at any time are defined in terms of a reliability index
and sensitivity factors from the first-order-second-moment
method. The time-varying mean crossing rate and the joint
mean crossing rate are derived. The probability density
functions of the first-passage time for various random barriers
are determined by two methods. The details of the method-
ology are explained in this paper. The application of this
methodology to a multiple-degree-of-freedom system in
conjunction with NESSUS is also addressed.

Random Process Decomposition

For a random process in time, such as load and temperature,
a Karhunen-Loeve expansion is used (Spanos and Ghanem,
1989). This expansion is a representation of the random
process in terms of independent random variables U, and their
associated time-varying characteristic functions f,,(2), as shown
in equation (1).

14
S()=5()+ Y Unfalt) (1

n=1

where 3 (1) is the mean value of the random process and r is
the number of terms included. The smoother the random
process is, the smaller the number r is.

Probabilistic Material Behavior Model

A generic material behavior model (multifactor interaction
model) (Boyce and Chamis, 1988) is used to synthesize the
variations of material properties for structures operating under

2

hostile environments, such as high or cryogenic random
temperature conditions. The fundamental assumption for this
model is that the material behaviors can be synthesized by
independent random variables V. The gencral form of this

model is shown in equation (2),
M (Ve-v ’
Mp= an (VF - Vo) @
j=1

where N is the number of environmental effects (temperature,
fatigue, etc.); Mpy, Vp Vg are independent random variables;
M py is the reference material properties; Vp, Vo, and V are final,
reference, and current environmental variables, respectively;
and Mp is the current material property. The exponent g is
determined from available experimental data or can be
estimated from anticipated material behavior due to a particular
environmental effect.

Perturbed Dynamic Analysis of
Uncertain Systems

The uncertain structural parameters, such as geometry or
material properties, are random processes in space. The
uncertain service environments, such as random excitations
and temperature, are random processes in time. Furthermore,
the material properties are affected and degraded by
temperature. Because a proabilistic structural analysis by the
first-order-second-moment method requires the input to be
independent random variables, a decomposition procedure is
applied to expand the random process in terms of independent
random variables and their respective time-varying character-
istic functions. Some other variables, such as initial boundary
conditions, damping ratio, and random amplitude for harmonic
loads, can also be included in the analysis.

A dynamic analysis is performed repeatedly to generate a
set of paraliel time histories (dynamic responses) corresponding
to a small change in each of the independent random variables.
These perturbed time histories provide information on how
the uncertainties in the problem parameters propagate through
time and affect the transient responses. The structural responses
R(7), in terms of independent random variables U, can be
expressed as

N N 3
R(=a,+Y aU;+Y bU?

i=] i=1

where a; and b; are the coefficients computed by using
perturbed time histories in a least-squares procedure. In the
following, a first-order-second-moment method is used,
together with the explicit response function determined by



cquation (3), to derive the probabilistic information of
structural responses. Also derived are the time-varying (joint)
crossing rate and the probability density function of the first-
passage time.

Statistics of Dynamic Responses

The dynamic responses of uncertain structures subjected to
random excitation are also random processes in time.
Although the first- and second-order statistical properties do
not characterize a random process completely, they still
contain the most important information of that process.
Subsequent structural reliability assessments will be based
on this information. In this paper the mean, the standard
deviation, and the autocorrelation function of any random
response process are derived in appendix A together with the
joint probability density function (pdf) of any response and
its derivative. The results are summarized in the following
paragraphs.

The cumulative distribution function (cdf) F, the mean
EIR(1)], and the standard deviation G for any structural response
R(r) (displacement, velocity, acceleration, stresses, etc., at any
time) are

FR(:)(Z,')=¢(—B:) i=1,..,k @)

k
E[RD]=R(1)=Y zifr(z)az o ®
i=]
and’

. k
OR() = JZ [z "R(’)]sz(zi)Az 6
i=1

where @ is the standard normal cumulative distribution
function; B is the reliability index from first-order-second-
moment (FORM) analysis (Lind et al., 1985); k is the number
of discretizations; and fp is the probability density function
(pdf) of R().

Defining X(f) as a random process (stress, displacement,
etc.) and letting R; and R, be any two responses from X(¢)),
Xy, Xep), X(ep), X(t5), X(t,), the joint cumulative distribution
function (cdf) Fgg, derived in appendix A is

Frr, (2:.7;) = ©(-B:)&(=B, )+ [0/ 6(-Bi,-Bjsu)du
i=1,...,k j=1..,1 %)

where (z,-,yj) are any pair of realizations; k and [ are the number
of discretizations for R; and R, respectively; p;; is determined
by equation (A10); and ¢ is the standard normal pdf. Letting
R;=X(1;) and Ry=X(t,), the autocorrelation function of the
random process X(?) is

3 ¥ [ X )X )] fxcpxeeiy,)Azay
9x(5)0X(t,)

p(‘lﬂ‘Z) =
®)

where fx(,‘)x(g') is the joint pdf of X(tl) and X(lz).
Letting R;=X(r) and Ry= X (1), equation (7) becames the joint

cdf of X(#) and X (). The mean rate at which a random process
X(¢) crosses a random barrier E(7) can be calculated by

ve = [ F gyt lB0.20) 2di ©)

where fy(x(;) is the joint pdf of X(s) and X@).

Probability Density Function of
First-Passage Time

The objective of a probabilistic dynamic analysis is to assess
the reliability of structures subjected to random excitations.
One of the failure modes concerning the structural reliability
is so-called first-excursion failure. It states that the structure
fails at the first excursion of a response to a given threshold.
The response can be displacement, stress, strain, or eigenvalue.
The threshold can be thought of as the maximum clearance
for displacement at any time, the material strength to resist
crack initiation caused by high stress, or the upper and lower
bounds for eigenvalues within which responses can be
minimized. The reliability for such problems is often
represented by the probability density function of the time
when the response first crosses the threshold (pdf of the first-
passage time). In this analysis the threshold is modeled as a
deterministic time function and an evolutionary random
process. The probability density function of the first-passage
time is calculated by two methods, (1) a crossing-rate-based
method and (2) an equivalent-system-based method, as
described here.

Crossing-Rate-Based Method
The probability density function f;(¢f) of the first-passage
time can be obtained by solving the integral equation

fi0+ [ KaOA @ =vg(0) (10 -

where &(7) is a random barrier process; Vg(¢) is the mean
crossing rate; K(f]7) is the crossing rate at ¢ conditional on
the first crossing having occurred at 7. It is an integral
identity expressing the fact that either a barrier crossing at
time ¢ must be the first or the first crossing must have occurred
at some previous time 7. Thus, the crossing rate can be given
as the sum of two contributions from the left-hand side of
equation (10). The simplest approximation of the pdf of the
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first-passage time is from the approximation K(f{7)=v£(¢); that
is, the crossing rate at t is assumed to be independent of a prior
first crossing at 7. In this case

fil))=ve-ve® fr(nree an

In the case where the Poisson hypothesis about independent
barrier crossings is invalid, an improved approximation for
the kernel K(f|7) is necessary. If the requirement that a barrier
crossing at 7 should be first is dropped, then

- v§§(t,t)
K@t) V(@ (12)

The pdf of the first-passage time is then calculated by the
equation

filD=ve)- f;:%i%})-h(r)dt a3)

where v g(t. 7) is the joint mean crossing rate. Letting r=n Az
and T=i gl, equation (13) can be discretized as

n-1 ALiA
f,(nm)=v¢(nm)—zv \f:m: )j,(im)m (14)
i=0

The mean crossing rate and the joint mean crossing rate are
derived in appendixes B and C, respectively.

Equivalent-System-Based Method
The probability density function f,(n Ar) of the first-passage
time is defined by the equation

f1(n Ar)Asr = Prob {Positive crossing in time[(n -1)at,n Al]

ﬁNo crossing in time [(l -1)At,i At]}

i=l
(15)

Assume As is small enough to allow at most one crossing
occurrence in this time interval. Defining the limit state
function g; and its corresponding safety margin M; by the
equations

N
8 =EAN-X(iA) M;=B;-3 o,U, i=1,..,n (6
r=l
where & is a random barrier process and X is a random response
process; B and o are the reliability index and sensitivity factor,
respectively; U, is a standardized normally distributed random
variable; and N is the number of independent random variables.
Substituting equation (16) into equation (15) gives

n-1
fi(nAnAL= Prob[(g.som 8a-1>0)[)(2>0 and s.-.1>0)]

i=]

= Prob[(g,, < 0):0:&- > o]

i=]

= Prob [(M, S o)ﬁM,- > o] an

, n-l .
The probability event nM,- >0 is approximated by an
i=l
equivalent event M, (k-1)>0, which is determined by a
recursive equation as follows:

M (k—1)>0=My_1y>0( | M (k-2)>0 k=2,..,n
(18)

Therefore,
f1(nAr)At = Prob [M,, <0and M,(n-1)> o] (19)

The probability on the right-hand side of equation (19) will be
calculated by equation (BSB). :

Numerigal Examples and Discussion

The algorithms derived previously were applied to a single-
degree-of-freedom oscillator shown in figure 1. The initial
system parameter K, was affected by a stationary random
temperature process 7\¢), and the current system parameter
K(r) was characterized by the following material behavior
model:

K(:)=Ko[—TTFL_T-T‘;—’T 20)

where K, Tr, and T are independent random variables and
T(¢) is a stationary random process whose covariance kemel is
defined by the equation

Cov [T(1),T(1)] = c%e'cfl’"* @

where oris the standard deviation of 7(¢) and the constant Cy
is the parameter that controls the smoothness of the random
process. If Cy=0, the mndom process reduces to a single
random variable. When Cy approaches infinity, the random
process becomes a white noise.

The natural frequency of the oscillator is obtained by the

equation



[30)

o (22)

W, (1) =

where M is the lump mass. Substituting equation (20) into
equation (22) gives

(on(p) J _Q.IZE_T_(‘_] (23)

Therefore, w,(f) becomes a random process in time. The
equation of the motion is then defined by the equation

i+2B0y(NE+03()x=F(1) (24)

where B is the damping ratio. In the following numerical
examples, these values are assumed: M = 300 000;
ETK;) = 30 000 000; o(Ky) = 600; E[Tg] = 2100; o(Tg) = 42;
Ty = 260; a = 0.25; E[T{9)]) = 1800; o[T(f)] = 36; Cy = 0.25;
B =0.10.

The oscillator is subjected to an evolutionary random
excitation F(f), which is defined by

F()=H()S(1) 25)
where H(t) is a deterministic function defined by

H(n=< 1<1,

(4

=1 1> (26)

as shown in figure 2. Here S(7) is a stationary random process

with mean E[S(f)] = S(t) = 20 and standard deviation o = 2.
The covariance kernel of S(¢) is defined by the equation

Cov [S(),5(7)] = o2 @

Again, the constant Cg will determine the smoothness of
the random excitation.

A procedure is used next to decompose the random excitation
S(¢) and the random temperature 7{¢) into a set of independent
random variables and their respective time-varying character-
istic functions. In the time interval [-1, /] the process S(¢) can
be expanded by the equation

S0y =50+ Y bifi(0)+ D bif ;) (28)
i=0 j=0

where b; and b; are the zero-mean independent random
variables and

2Cs05 - cos(w;t)
i(t)= : 9)
fi®) miz+C§ Jl‘+sin!2¢o,~l,) @
20);
and
_ 2Cso§_ cos(® ) "
fi@®)= (30)

m§+C§
b 20;
J

in which ©; md(o are the solution to the transcendental
equations

Cs—(l),'tln((l)"l‘)=0 31

(l)j+Cs lan(a)jl,)=0 (32)

The random temperature 7(¢) will be decomposed in a similar
way.

Statistics of Dynamic Responses

The covariance of the random excitations is defined by
equation (27) with Cg = 5. This value will produce a
nonsmooth random process with a correlation function similar
to that for earthquake records. Thirty-six independent random
variables are used to represent this process. The covariance
of the random temperature is defined by equation (21) with
Cy=0.25 because temperature oscillates slowly in time. Ten
independent random variables are used to define this process.
The mean, the standard deviation, and the autocorrelation
function of the dynamic displacement were determined
from equations (4) to (6). The results were compared with
Monte Carlo simulation solutions and are shown in figure 3.
Good agreement is observed. It is also noticed that in the
time interval (0,2), the displacement process X(¢) is
nonstationary with varying mean, standard deviation, and
autocorrelation function. However, the process becomes
stationary after 2 seconds.

Probability Density Function of First-Passage Time

The first-passage problems have been studied with different
barriers and loading conditions. Two types of random barriers
are used; they are defined by equations (33) and (34).

Type A:
é(r)=§o(1-—’ ] 33)
Ua



Type B:
&(r)= &o(l-—— [MT (34)

where &, is the reference barrier, ¢ is the final time, and 1/t
is the degradation slope, which reflects the environmental
degradation on the barriers. The type B random barrier includes
the temperature effect more specifically. Two types of random
loading are considered. The first type is the one with Cg in
equation (27) equal to 5. This type of loading is similar to
earthquake records, which are nonsmooth random processes.
The second type of loading has Cg = 1, corresponding to a
smooth random process. Two different degradation slopes
are used, 0.02 and 0.15, to represent slow and fast
environmental degradation. The mean reference barriers are
chosen such that they correspond to ¢ and 30 levels of the
response process at ¢ = 0. The statistics of random loads and
barriers for each problem are listed in table I.

The probability density functions of the first-passage time
were calculated by both the crossing-rate-based method and
the equivalent-system-based method. The results were
compared with Monte Carlo simulation, as shown in figures 4
to7. With type A deterministic barriers, a nonsmooth random
excitation (Cg = 5), and a small barrier degradation slope
(0.02), the crossing-rate-based method performed well, as
shown in figures 4(a) and (b), but the equivalent-system-
based method did not. However, the equivalent-system-based
method gave satisfactory results for problems with a large
barrier degradation slope (0.15), as shown in figures 4(c) and
(d), but the crossing-rate-based method did not. With the
same barrier conditions as for problems in figures 4(a) and (b)
and a smooth random excitation (Cg = 1), the results from the
equivalent-system-based method improved compared with
figures 4(a) and (b) as shown in figures 5(a) and (b). The pdf

of the first-passage time predicted by the crossing-rate-based

~method for a large degradation slope also improved compared
with figures 4(c) and (d), as shown in figures 5(c) and (d).
Figure 6 shows the pdf of the first-passage time with nonsmooth
random excitation (Cg = 5) and type B random barriers. As
expected, the equivalent-system-based method performed well
for large degradation slopes, as shown in figures 6(c) and (d).
It also gave a satisfactory answer for a small degradation
slope, as shown in figures 6(a) and (b). For problems with
type B random barriers and subjected to smooth random
excitations (Cg = 1), some improvements in the results
predicted by the equivalent-system-based method were also
observed for a small degradation slope (0.02), as shown in
figures 7(a) and (b). As usual, it was good for a large
degradation slope, as shown in figures 7(c) and (d).

In general, the crossing-rate-based method is good for
problems with a small degradation slope (0.02) subjected to
nonwhite (Cs < 5) excitations and for either low or high
thresholds. The equivalent-system-based method is good for
problems with a large degradation slope (0.15) subjected to
nonwhite (Cg < 5) excitations and for either low or high
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thresholds. However, when any of the following conditions
are present, the results of the equivalent-system-based method
will converge to the solutions by Monte Carlo simulation.
The conditions are (1) smoother random excitations, (2) more
uncertainties in the barrier, and (3) larger degradation slope.
The reason is stated as follows: In arder to have the equivalent-
system-based method perform well, either the reliability index
B; defined in equation (16) decreases rapidly or the cormrelations
between the safety margins are large. Otherwise, a quadratic
equivalent system should be developed to improve the
accuracy. The degradation slope essentially controls the
decreasing speed of B; The degree of uncertainty in the barriers
and the smoothness of the random excitations, on the other
hand, determine the correlations of the safety margins.

Although the proposed method was applied to a single-
degree-of-freedom oscillator, it can be directly applied to a
multiple-degree-of-freedom system as addressed in the next
section. The computing time required by Monte Carlo
simulation is highly dependent on the degree of freedom of
the finite element model. However, the computing time
required for the proposed methods is dependent on the number
of random variables and is not very sensitive to the degree of
freedom of the finite element model. Therefore, they are
more attractive for problems with complex structures or for
nonlinear problems where analytical solutions do not exist. It
is necessary to point out that the proposed method is not
suitable for problems with white noise excitations because the
infinite number of independent random variables required to
represent this special random process makes the proposed
method inefficient.

Application to Multiple-Degree-of-
Freedom System in Conjunction With
NESSUS

The algorithms derived in this paper were verified by
applying them to a single-degree-of-freedom oscillator.
However, the application to multiple-degree-of-freedom
structures is straightforward and is discussed here. The
equation of motion for such a system is defined by

[M)X(e)+[C]X(e)+ [K]X(t) = F(r) (35)
where the mass matrix [M], the damping matrix [C], and the
stiffness matrix [K] can be random processes in space.
Because the explicit response functions in terms of
independent random variables are required for the methods
developed previously, a random process decomposition
procedure is needed to represent the correlated random
process in space by a set of independent random variables.
This can be achieved by using NESSUS/PRE. NESSUS/
PRE is a preprocessor used for the preparation of the statistical
data needed to perform the probabilistic structural analysis.



It allows the user to describe the uncertainties in the structural
parameters (primitive random variables) at nodal points of a
finite element mesh. The uncertainties in these parameters
are specified over this mesh by defining the mean value and
the standard deviation of the random variable at each point,
together with an appropriate form of correlation. Correlated
random variables are then decomposed into a set of indepen-
dent vectors by a modal analysis.

The perturbed time histories of any structural response
comesponding to a small variation of each independent random
variable can be generated by any finite element code with
transient dynamic capability. The Finite Element Methods in
NESSUS, called NESSUS/FEM, is one of the codes that can
be used for this purpose. The explicit response functions can
then be computed accordingly.

NESSUS/FPI (Fast Probability Integrator) (Wu, 1985)
provides the first-order-second-moment method necessary for
determining the probabilistic responses and solving the first-
passage problems. It is obvious that the newly developed
methods not only utilize NESSUS but also enhance its
capability to perform various dynamic problems. It is worth
pointing out that when the mass, damping, and stiffness
matrices are independent of time, the tramnsient dynamic
responses can be obtained in closed forms by a modal
analysis, The perturbed eigenvalues and comesponding
eigenvectors are computed by using an efficient algorithm in
NESSUS/FEM.

Conclusions

Methods have been developed for the probabilistic dynamic
analysis of uncertain structures subjected to random excitations
with random environmental effects on the uncertain structural
parameters. The statistics of dynamic analysis such as time-
varying mean, standard deviation, and autocorrelation function
were determined. The first-passage problems, with barriers
being deterministic functions and stationary/evolutionary
random processes, were studied. The mean crossing rate and
the joint mean crossing rate were derived. Two methods were
proposed to determine the pdf of the first-passage time. The
crossing-rate-based method is for problems of nonsmooth
random excitations with small uncertainties in the barrier and
small environmental effect on the barrier. The equivalent-
system-based method is for problems of either large barrier
degradation rate, smooth random excitations, or large
uncertainties in the barrier.

APPENDIX A
STATISTICS OF DYNAMIC
RESPONSES

In order to calculate the response statistics, a limit state
function g is first defined by

=R(1)-z (AD)

where R(¢) is the structural response (X(t), X, X@) at
time ¢, which is a function of independent random variables,
and z is any realization. This limit state is subsequeatly
transformed into a standardized normally distributed
probability space and is replaced by a lincar safety margin M
through a first-order-second-moment (FORM) analysis, where
M is defined by

N
M =p'-Y dU,

r=l

(A2)

and where B’ and u are the reliability index and the sensitivity
factor, rwpecnvely U, is a standardized normally distributed
random variable; and N is the number of independent random
variables. The probability that gf <0 or R(r) < z is determined
by

Prob(g' < 0) = Prob[ R(1)< 2] = Prob(M' < 0) = ¢(;ﬁ‘) (A3)

where @ is the standard normal cumulative distribution
function. The cumulative distribution function (cdf) Fg for any
structural response R(f) at any time can be generated from
equation (A3) by selecting a number of realization z from an
appropriate response range, as shown in equation (A4).

Fray(zi) = ¢(—p}) i=1,..k (A4)

If fpeg) is denoted as the probabilty density function (pdf) of
R(t), the mean and the standard deviation of R(r) can be
calculated by the equations

=R{1) =i %f (r)(2:)A2

i=1

E[R(:)] (AS)

(A6)

g[z,--i(;)]z £ r(zi)Az

The joint cdf Frp is derived as follows: Let R; and R; be

any two of X(8), X(1), X(9), X (v), X(0), X (%), etc., where X(1)
is a random response process. Define the limit state functions
g; and g; by

&i=R-z, gi=Ry-y; (A7)
where z; and y; are different realizations. Also define their
corresponding '{mear safety margins M; and M by

Mi=|3i"z°~riun Mj‘_’Bj_ZarjUr

r=1 r=1

(A8)



The joint cdf Fg g, will be determined by the equation
F&Rz(z,-,yj)=Prob(Rl SZ" and Rz < yl)
=Prob(M,-SOand MI <0)
= ®(-p;) ©{-B;)+ [ &(-B;,-Bjiu)au *9)
i=1,.k,  j=1,..1 '

. N
Pij =2, Orillyj (A10)

r=1
Let R; = X(r) and R, = X(7) and calculate the autocorrelation
function of X(¢) by the equation )

Y X[ Xy - X)) xpxa) i) 228y
pt.7)= Oy (,\O
X(1)7x(7)

(A1D)

where fx(1)x(r) is the joint pdf of X(1) and X(1).

APPENDIX B
MEAN CROSSING RATE v(9)

The mean rate at which a random process X(r) crosses a random
barrier £(¢) is determined by the equation

[Avcrage number of positive crossings in time (1,¢+ At)]
= Prob[Posiu've slope crossings in time (f,r+ Ax)]
= Prob[ X (¢) < &(r) and X(1+ Ar)>E(r+ ar)]
=F (B1)

where £(f) is the barrier. Therefore,
Ve(r) A= F (B2)

Let ¢t = n Ar; the crossing rate then becomes

P’
Vg(n Al)=z‘;“ (B3)

where P’ is determined as follows: The limit state functions
g’ and gf"A’ are defined by the equations

g=E(0)-X(t) gYV=E(t+A)-X(t+A) (B4

8

The corresponding linear safety margins M and M**% in the
standardized normally distributed probability space are

N N

M' = B‘ _ Zatru" M'+A‘ = B""N -Za:.+NUr (BS)
r=1 r=1

Substitute equations (B4) and (B5) into equation (B1) to get

P, =Prob(g*>0 and g"*4/<0) = Prob(M' >0 and M*+%<0)

(B6)
Define the probability events A, B, A4, and B by
A=M'<0 A=M'>0
B=M"*4<0 B=M"A>0 ®7)

Then substitute equation (B7) intovequation (B6) to get

P’'=Prob(AB)
= Prob(B)— Prob(AB)
= Prob(M"'** £0) - Prob(M'** <0 and M'<0)

=¢(—ﬁ"“)-[¢(-ﬂ"“ )o(—ﬁ')+[¢(-ﬁ“'.—ﬁ'.-u)du]

(B8)
where ¢ is the standard normal pdf and
N
p=Y oot _ (®9)
r=1
APPENDIX C
JOINT MEAN CROSSING
RATEv g&(t‘,’t)

The joint mean rate at which a random process X crosses a
random barrier § at times ¢ and 1 is derived by the following
equations:

[Avetage number of positive crossings in time(1,t + Af)
and positive crossings in time (7,7+Ar)]
= Prob][ Positive crossings in time (¢,¢ + At) and
positive crossings in time (7, 7+ At)]
=Prob[X (1) <&(r)and X (r+Ar)>E(1+At)and
X(1)<E(t)and X(T+A1)>E(T+AL)]
=F cyn



where 1 > 1. Tberefore, the joint mean crossing rate is
determined by the following equation with ¢ = n Ar and
T=iArn
V§§(" A, At) =—£L.‘7 ((o7))
(A1)

where P?is determined by first defining the limit state functions
81 8> 83 and g4

& =8()-X() g =8(+An-X(1+41)

& =8(1)-X(7)

The corresponding linear safety margins M;, M,, M3, and M,
in the standardized normally distributed probability space are

N
M;=p;-Y aU, i=12,34 (C4)

r=l

Then substituting equations (C3) and (C4) into equation (C1)
gives

Pl= Prob[(g'>0 anci g”A‘SO) and (g1> 0and g‘*“‘so)]

= Prob[(M‘>o and M”A‘so) and (M‘>o and M”A‘so)]

((s8))
Also the probability events are defined as
A=M,<0 A=M>0
B=M,s0 B=M,>0
C=M,;s0 C=M;>0
D=M,<0 D=M,>0 (C6)

Substituting equation (C6) into equation (C5) gives

P7’=Prob(ABCD)
= Prob(BD) + Prob( ABCD) - Prob{ ABD) - Prob(BCD)
(o)

To alleviate the computational difficulty in equation (C7),
two equivalent probability events E,; and E,, were defived to
replace probability events AB and CD, respectively. Therefore,
equation (C7) becomes
P/'= Prob(BD)+ Prob( E,,E,, ) - Prob( E, D) - Prob(BE,, )
(C8)

84 =8(T+AN-X(1+4) (C3)

Each term on the right-hand side of the equation can be easily
determined from equation (A9). The equivalent systems E,
and E_, are determined as follows: Because the safety margins
M, and M, are highly correlated, the probability event AB can
be replaced by an equivalent event E,; (Gollwitzer and
Rachwitz, 1983) in such a way that

Prob{ AB] = Prob{M;< 0 and M,<0]
= Prob[Md < 0] = Pl'Ob[Ed] (Cg)

where M, is the equivalent lincar safety margin defined by

N .
My =Ba-2.0f'U, (C10)
r=1
where
Be1 =-®{Prob(48)] (C11)
and
af! r=1,..,N (C12)

The probability event CD is replaced by equivalent event E 5
in a similar way.
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TABLE I.—STATISTICS FOR RANDOM LOADS AND BARRIERS

Figure Random barriers Loads,
Barrier Reference barrier Degradation | Cgin
type Mean Covariance slope eq.(27)
4(a) A 0.37 0 0.02 5
4(b) 47 02
4(c) 37 15
4(d) 47 15 v
5(a) - 37 02 1
5(b) 47 02
5() 37 15
3(d) v 47 v 15 v
6(a) B .58 .10 02 5
6(b) 74 02
6(c) 58 15
6(d) 74 15 v
7(a) 58 02 1
7(b) 74 02
7(c) .58 15
) \ 74 v 15 v
HY 4
l—u X0
c | 10 —
1 o7
— ANV
K&
O O O O Time
Figure 1.—Single-degree-of-freedom oscillator subjected Figure 2.—Modulating function Hfj).

to random excitation.
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(a) Mean. (b) Standard deviation.
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Time lag, sec
(c) Autocorrelation function at 1 sec. (d) Autocorrelation function at 5 sec.

Figure 3.—Statistics of displacement in equation (24) (Cg in eq. (27), 5).
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Probability density tunction
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(a) Mean reference barrier, 0.37; (b) Mean reference barrier, 0.47;
barrier degradation slope, 0.02. barrier degradation siope, 0.02.
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- '\ -
\\
LML N

First-passage time, sec

(c) Mean reference barrier, 0.37; {d) Mean reference barrier, 0.47;
barrier degradation slope, 0.15. barrier degradation siope, 0.15.

Figure 4. —Probability density function of first-passage time (Cs in eq. (27), 5;

coefficient of variation of reference barrier, 0; type A deterministic barrier model).
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Probability density function
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(b) Mean reference barrier, 0.47;
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First-passage time, sec

(c) Mean reference barrier, 0.37,

barrier degradation slope, 0.15.

(d) Mean reference barrier, 0.47;
barrier degradation siope, 0.15.

Figure 5.—Probability density function of first-passage time (Cs in eq. (27), 1;
coefficient of variation of reference barmier, 0; type A deterministic barrier model).
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barrier degradation slope, 0.02. barrier degradation siops, 0.02.
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First-passage time, sec

{c) Mean reference barrier, 0.58;

barrier degradation slope, 0.15.

(d) Mean reference barrier, 0.74;
barrier degradation slope, 0.15.

Figure 6.—Probability density function of first-passage time (Cgin eq.
(27, 5; cosfficient of variation of reference barrier, 0.1; type B

random barrier model).
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- ————  Equivalent-system-based method
——=——  Crossing-rate-based method
Monte Carlo simulation
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£ () Mean reference barrier, 0.58; (b) Mean reference barrier, 0.74;
.§ barrier degradation slope, 0.02. barrier degradation slope, 0.02.
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First-passage time, sec
{c) Mean reference barrier, 0.58; {b) Mean reference barrier, 0.74;
barrier degradation slope, 0.15. barrier degradation slope, 0.15.

Figure 7.—Probability density function of first-passage time (Cgin eq. (27), 1;
coefficient of variation of reference barrier, 0.1; type B random barrier
model). ‘
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